DTLib.XXHash/src/Standart.Hash.xxHash/__inline__xxHash3.cs
Oleksandr Melnyk fd21646c83 Inline xxHash3
2022-06-13 09:43:40 +03:00

1420 lines
66 KiB
C#

/*
* This is the auto generated code.
* All function calls are inlined in XXH3_128bits_internal
* Please don't try to analyze it.
*/
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
namespace Standart.Hash.xxHash
{
public static partial class xxHash3
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static unsafe ulong __inline__XXH3_64bits_internal(byte* input, int len, ulong seed64, byte* secret, int secretLen)
{
if (len <= 16)
{
if (len > 8)
{
byte* ptr = secret + 24;
byte* ptr1 = secret + 32;
ulong bitflip1 = (*(ulong*) ptr ^ *(ulong*) ptr1) + seed64;
byte* ptr2 = secret + 40;
byte* ptr3 = secret + 48;
ulong bitflip2 = (*(ulong*) ptr2 ^ *(ulong*) ptr3) - seed64;
ulong input_lo = *(ulong*) input ^ bitflip1;
byte* ptr4 = input + len - 8;
ulong input_hi = *(ulong*) ptr4 ^ bitflip2;
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(input_lo, input_hi, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = input_hi & 0xFFFFFFFF;
ulong lo_lo = (ulong) (uint) (input_lo & 0xFFFFFFFF) * (ulong) (uint) (y);
ulong y1 = input_hi & 0xFFFFFFFF;
ulong hi_lo = (ulong) (uint) (input_lo >> 32) * (ulong) (uint) (y1);
ulong y2 = input_hi >> 32;
ulong lo_hi = (ulong) (uint) (input_lo & 0xFFFFFFFF) * (ulong) (uint) (y2);
ulong y3 = input_hi >> 32;
ulong hi_hi = (ulong) (uint) (input_lo >> 32) * (ulong) (uint) (y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
ulong acc = ((ulong) len)
+ (((input_lo << 56) & 0xff00000000000000UL) |
((input_lo << 40) & 0x00ff000000000000UL) |
((input_lo << 24) & 0x0000ff0000000000UL) |
((input_lo << 8) & 0x000000ff00000000UL) |
((input_lo >> 8) & 0x00000000ff000000UL) |
((input_lo >> 24) & 0x0000000000ff0000UL) |
((input_lo >> 40) & 0x000000000000ff00UL) |
((input_lo >> 56) & 0x00000000000000ffUL)) + input_hi
+ (product.low64 ^ product.high64);
ulong h64 = acc;
h64 = h64 ^ (h64 >> 37);
h64 *= 0x165667919E3779F9UL;
h64 = h64 ^ (h64 >> 32);
return h64;
}
if (len >= 4)
{
ulong seed = seed64;
uint x = (uint) seed;
seed ^= (ulong) (((x << 24) & 0xff000000) |
((x << 8) & 0x00ff0000) |
((x >> 8) & 0x0000ff00) |
((x >> 24) & 0x000000ff)) << 32;
{
uint input1 = *(uint*) input;
byte* ptr2 = input + len - 4;
uint input2 = *(uint*) ptr2;
byte* ptr = secret + 8;
byte* ptr1 = secret + 16;
ulong bitflip = (*(ulong*) ptr ^ *(ulong*) ptr1) - seed;
ulong input64 = input2 + (((ulong) input1) << 32);
ulong keyed = input64 ^ bitflip;
ulong h64 = keyed;
h64 ^= ((h64 << 49) | (h64 >> (64 - 49))) ^ ((h64 << 24) | (h64 >> (64 - 24)));
h64 *= 0x9FB21C651E98DF25UL;
h64 ^= (h64 >> 35) + (ulong) len;
h64 *= 0x9FB21C651E98DF25UL;
return h64 ^ (h64 >> 28);
}
}
if (len != 0)
{
byte c1 = input[0];
byte c2 = input[len >> 1];
byte c3 = input[len - 1];
uint combined = ((uint) c1 << 16) |
((uint) c2 << 24) |
((uint) c3 << 0) |
((uint) len << 8);
byte* ptr = secret + 4;
ulong bitflip = (*(uint*) secret ^
*(uint*) ptr) + seed64;
ulong keyed = (ulong)combined ^ bitflip;
ulong hash = keyed;
hash ^= hash >> 33;
hash *= XXH_PRIME64_2;
hash ^= hash >> 29;
hash *= XXH_PRIME64_3;
hash ^= hash >> 32;
return hash;
}
byte* ptr5 = secret + 56;
byte* ptr6 = secret + 64;
ulong hash1 = seed64 ^ (*(ulong*) ptr5 ^ *(ulong*) ptr6);
hash1 ^= hash1 >> 33;
hash1 *= XXH_PRIME64_2;
hash1 ^= hash1 >> 29;
hash1 *= XXH_PRIME64_3;
hash1 ^= hash1 >> 32;
return hash1;
}
if (len <= 128)
{
ulong acc = ((ulong)len) * XXH_PRIME64_1;
if (len > 32)
{
if (len > 64)
{
if (len > 96)
{
byte* input1 = input + 48;
byte* secret1 = secret + 96;
ulong input_lo = *(ulong*) input1;
byte* ptr = input1 + 8;
ulong input_hi = *(ulong*) ptr;
byte* ptr1 = secret1 + 8;
ulong rhs = input_hi ^ (*(ulong*) ptr1 - seed64);
ulong lhs = input_lo ^ (*(ulong*) secret1 + seed64);
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong) (uint) (lhs & 0xFFFFFFFF) * (ulong) (uint) (y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong) (uint) (lhs >> 32) * (ulong) (uint) (y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong) (uint) (lhs & 0xFFFFFFFF) * (ulong) (uint) (y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong) (uint) (lhs >> 32) * (ulong) (uint) (y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
acc += product.low64 ^ product.high64;
byte* input2 = input + len - 64;
byte* secret2 = secret + 112;
ulong inputLo = *(ulong*) input2;
byte* ptr2 = input2 + 8;
ulong inputHi = *(ulong*) ptr2;
byte* ptr3 = secret2 + 8;
ulong rhs1 = inputHi ^ (*(ulong*) ptr3 - seed64);
ulong lhs1 = inputLo ^ (*(ulong*) secret2 + seed64);
uint128 ret1;
if (Bmi2.IsSupported)
{
ulong productLow;
ulong productHigh = Bmi2.X64.MultiplyNoFlags(lhs1, rhs1, &productLow);
uint128 r129;
r129.low64 = productLow;
r129.high64 = productHigh;
ret1 = r129;
}
else
{
ulong y4 = rhs1 & 0xFFFFFFFF;
ulong loLo = (ulong) (uint) (lhs1 & 0xFFFFFFFF) * (ulong) (uint) (y4);
ulong y5 = rhs1 & 0xFFFFFFFF;
ulong hiLo = (ulong) (uint) (lhs1 >> 32) * (ulong) (uint) (y5);
ulong y6 = rhs1 >> 32;
ulong loHi = (ulong) (uint) (lhs1 & 0xFFFFFFFF) * (ulong) (uint) (y6);
ulong y7 = rhs1 >> 32;
ulong hiHi = (ulong) (uint) (lhs1 >> 32) * (ulong) (uint) (y7);
ulong cross1 = (loLo >> 32) + (hiLo & 0xFFFFFFFF) + loHi;
ulong upper1 = (hiLo >> 32) + (cross1 >> 32) + hiHi;
ulong lower1 = (cross1 << 32) | (loLo & 0xFFFFFFFF);
uint128 r1210;
r1210.low64 = lower1;
r1210.high64 = upper1;
ret1 = r1210;
}
uint128 product1 = ret1;
acc += product1.low64 ^ product1.high64;
}
byte* input3 = input + 32;
byte* secret3 = secret + 64;
ulong inputLo1 = *(ulong*) input3;
byte* ptr4 = input3 + 8;
ulong inputHi1 = *(ulong*) ptr4;
byte* ptr5 = secret3 + 8;
ulong rhs2 = inputHi1 ^ (*(ulong*) ptr5 - seed64);
ulong lhs2 = inputLo1 ^ (*(ulong*) secret3 + seed64);
uint128 ret2;
if (Bmi2.IsSupported)
{
ulong productLow1;
ulong productHigh1 = Bmi2.X64.MultiplyNoFlags(lhs2, rhs2, &productLow1);
uint128 r1211;
r1211.low64 = productLow1;
r1211.high64 = productHigh1;
ret2 = r1211;
}
else
{
ulong y8 = rhs2 & 0xFFFFFFFF;
ulong loLo1 = (ulong) (uint) (lhs2 & 0xFFFFFFFF) * (ulong) (uint) (y8);
ulong y9 = rhs2 & 0xFFFFFFFF;
ulong hiLo1 = (ulong) (uint) (lhs2 >> 32) * (ulong) (uint) (y9);
ulong y10 = rhs2 >> 32;
ulong loHi1 = (ulong) (uint) (lhs2 & 0xFFFFFFFF) * (ulong) (uint) (y10);
ulong y11 = rhs2 >> 32;
ulong hiHi1 = (ulong) (uint) (lhs2 >> 32) * (ulong) (uint) (y11);
ulong cross2 = (loLo1 >> 32) + (hiLo1 & 0xFFFFFFFF) + loHi1;
ulong upper2 = (hiLo1 >> 32) + (cross2 >> 32) + hiHi1;
ulong lower2 = (cross2 << 32) | (loLo1 & 0xFFFFFFFF);
uint128 r1212;
r1212.low64 = lower2;
r1212.high64 = upper2;
ret2 = r1212;
}
uint128 product2 = ret2;
acc += product2.low64 ^ product2.high64;
byte* input4 = input + len - 48;
byte* secret4 = secret + 80;
ulong inputLo2 = *(ulong*) input4;
byte* ptr6 = input4 + 8;
ulong inputHi2 = *(ulong*) ptr6;
byte* ptr7 = secret4 + 8;
ulong rhs3 = inputHi2 ^ (*(ulong*) ptr7 - seed64);
ulong lhs3 = inputLo2 ^ (*(ulong*) secret4 + seed64);
uint128 ret3;
if (Bmi2.IsSupported)
{
ulong productLow2;
ulong productHigh2 = Bmi2.X64.MultiplyNoFlags(lhs3, rhs3, &productLow2);
uint128 r1213;
r1213.low64 = productLow2;
r1213.high64 = productHigh2;
ret3 = r1213;
}
else
{
ulong y12 = rhs3 & 0xFFFFFFFF;
ulong loLo2 = (ulong) (uint) (lhs3 & 0xFFFFFFFF) * (ulong) (uint) (y12);
ulong y13 = rhs3 & 0xFFFFFFFF;
ulong hiLo2 = (ulong) (uint) (lhs3 >> 32) * (ulong) (uint) (y13);
ulong y14 = rhs3 >> 32;
ulong loHi2 = (ulong) (uint) (lhs3 & 0xFFFFFFFF) * (ulong) (uint) (y14);
ulong y15 = rhs3 >> 32;
ulong hiHi2 = (ulong) (uint) (lhs3 >> 32) * (ulong) (uint) (y15);
ulong cross3 = (loLo2 >> 32) + (hiLo2 & 0xFFFFFFFF) + loHi2;
ulong upper3 = (hiLo2 >> 32) + (cross3 >> 32) + hiHi2;
ulong lower3 = (cross3 << 32) | (loLo2 & 0xFFFFFFFF);
uint128 r1214;
r1214.low64 = lower3;
r1214.high64 = upper3;
ret3 = r1214;
}
uint128 product3 = ret3;
acc += product3.low64 ^ product3.high64;
}
byte* input5 = input + 16;
byte* secret5 = secret + 32;
ulong inputLo3 = *(ulong*) input5;
byte* ptr8 = input5 + 8;
ulong inputHi3 = *(ulong*) ptr8;
byte* ptr9 = secret5 + 8;
ulong rhs4 = inputHi3 ^ (*(ulong*) ptr9 - seed64);
ulong lhs4 = inputLo3 ^ (*(ulong*) secret5 + seed64);
uint128 ret4;
if (Bmi2.IsSupported)
{
ulong productLow3;
ulong productHigh3 = Bmi2.X64.MultiplyNoFlags(lhs4, rhs4, &productLow3);
uint128 r1215;
r1215.low64 = productLow3;
r1215.high64 = productHigh3;
ret4 = r1215;
}
else
{
ulong y16 = rhs4 & 0xFFFFFFFF;
ulong loLo3 = (ulong) (uint) (lhs4 & 0xFFFFFFFF) * (ulong) (uint) (y16);
ulong y17 = rhs4 & 0xFFFFFFFF;
ulong hiLo3 = (ulong) (uint) (lhs4 >> 32) * (ulong) (uint) (y17);
ulong y18 = rhs4 >> 32;
ulong loHi3 = (ulong) (uint) (lhs4 & 0xFFFFFFFF) * (ulong) (uint) (y18);
ulong y19 = rhs4 >> 32;
ulong hiHi3 = (ulong) (uint) (lhs4 >> 32) * (ulong) (uint) (y19);
ulong cross4 = (loLo3 >> 32) + (hiLo3 & 0xFFFFFFFF) + loHi3;
ulong upper4 = (hiLo3 >> 32) + (cross4 >> 32) + hiHi3;
ulong lower4 = (cross4 << 32) | (loLo3 & 0xFFFFFFFF);
uint128 r1216;
r1216.low64 = lower4;
r1216.high64 = upper4;
ret4 = r1216;
}
uint128 product4 = ret4;
acc += product4.low64 ^ product4.high64;
byte* input6 = input + len - 32;
byte* secret6 = secret + 48;
ulong inputLo4 = *(ulong*) input6;
byte* ptr10 = input6 + 8;
ulong inputHi4 = *(ulong*) ptr10;
byte* ptr11 = secret6 + 8;
ulong rhs5 = inputHi4 ^ (*(ulong*) ptr11 - seed64);
ulong lhs5 = inputLo4 ^ (*(ulong*) secret6 + seed64);
uint128 ret5;
if (Bmi2.IsSupported)
{
ulong productLow4;
ulong productHigh4 = Bmi2.X64.MultiplyNoFlags(lhs5, rhs5, &productLow4);
uint128 r1217;
r1217.low64 = productLow4;
r1217.high64 = productHigh4;
ret5 = r1217;
}
else
{
ulong y20 = rhs5 & 0xFFFFFFFF;
ulong loLo4 = (ulong) (uint) (lhs5 & 0xFFFFFFFF) * (ulong) (uint) (y20);
ulong y21 = rhs5 & 0xFFFFFFFF;
ulong hiLo4 = (ulong) (uint) (lhs5 >> 32) * (ulong) (uint) (y21);
ulong y22 = rhs5 >> 32;
ulong loHi4 = (ulong) (uint) (lhs5 & 0xFFFFFFFF) * (ulong) (uint) (y22);
ulong y23 = rhs5 >> 32;
ulong hiHi4 = (ulong) (uint) (lhs5 >> 32) * (ulong) (uint) (y23);
ulong cross5 = (loLo4 >> 32) + (hiLo4 & 0xFFFFFFFF) + loHi4;
ulong upper5 = (hiLo4 >> 32) + (cross5 >> 32) + hiHi4;
ulong lower5 = (cross5 << 32) | (loLo4 & 0xFFFFFFFF);
uint128 r1218;
r1218.low64 = lower5;
r1218.high64 = upper5;
ret5 = r1218;
}
uint128 product5 = ret5;
acc += product5.low64 ^ product5.high64;
}
byte* input7 = input + 0;
byte* secret7 = secret + 0;
ulong inputLo5 = *(ulong*) input7;
byte* ptr12 = input7 + 8;
ulong inputHi5 = *(ulong*) ptr12;
byte* ptr13 = secret7 + 8;
ulong rhs6 = inputHi5 ^ (*(ulong*) ptr13 - seed64);
ulong lhs6 = inputLo5 ^ (*(ulong*) secret7 + seed64);
uint128 ret6;
if (Bmi2.IsSupported)
{
ulong productLow5;
ulong productHigh5 = Bmi2.X64.MultiplyNoFlags(lhs6, rhs6, &productLow5);
uint128 r1219;
r1219.low64 = productLow5;
r1219.high64 = productHigh5;
ret6 = r1219;
}
else
{
ulong y24 = rhs6 & 0xFFFFFFFF;
ulong loLo5 = (ulong) (uint) (lhs6 & 0xFFFFFFFF) * (ulong) (uint) (y24);
ulong y25 = rhs6 & 0xFFFFFFFF;
ulong hiLo5 = (ulong) (uint) (lhs6 >> 32) * (ulong) (uint) (y25);
ulong y26 = rhs6 >> 32;
ulong loHi5 = (ulong) (uint) (lhs6 & 0xFFFFFFFF) * (ulong) (uint) (y26);
ulong y27 = rhs6 >> 32;
ulong hiHi5 = (ulong) (uint) (lhs6 >> 32) * (ulong) (uint) (y27);
ulong cross6 = (loLo5 >> 32) + (hiLo5 & 0xFFFFFFFF) + loHi5;
ulong upper6 = (hiLo5 >> 32) + (cross6 >> 32) + hiHi5;
ulong lower6 = (cross6 << 32) | (loLo5 & 0xFFFFFFFF);
uint128 r1220;
r1220.low64 = lower6;
r1220.high64 = upper6;
ret6 = r1220;
}
uint128 product6 = ret6;
acc += product6.low64 ^ product6.high64;
byte* input8 = input + len - 16;
byte* secret8 = secret + 16;
ulong inputLo6 = *(ulong*) input8;
byte* ptr14 = input8 + 8;
ulong inputHi6 = *(ulong*) ptr14;
byte* ptr15 = secret8 + 8;
ulong rhs7 = inputHi6 ^ (*(ulong*) ptr15 - seed64);
ulong lhs7 = inputLo6 ^ (*(ulong*) secret8 + seed64);
uint128 ret7;
if (Bmi2.IsSupported)
{
ulong productLow6;
ulong productHigh6 = Bmi2.X64.MultiplyNoFlags(lhs7, rhs7, &productLow6);
uint128 r1221;
r1221.low64 = productLow6;
r1221.high64 = productHigh6;
ret7 = r1221;
}
else
{
ulong y28 = rhs7 & 0xFFFFFFFF;
ulong loLo6 = (ulong) (uint) (lhs7 & 0xFFFFFFFF) * (ulong) (uint) (y28);
ulong y29 = rhs7 & 0xFFFFFFFF;
ulong hiLo6 = (ulong) (uint) (lhs7 >> 32) * (ulong) (uint) (y29);
ulong y30 = rhs7 >> 32;
ulong loHi6 = (ulong) (uint) (lhs7 & 0xFFFFFFFF) * (ulong) (uint) (y30);
ulong y31 = rhs7 >> 32;
ulong hiHi6 = (ulong) (uint) (lhs7 >> 32) * (ulong) (uint) (y31);
ulong cross7 = (loLo6 >> 32) + (hiLo6 & 0xFFFFFFFF) + loHi6;
ulong upper7 = (hiLo6 >> 32) + (cross7 >> 32) + hiHi6;
ulong lower7 = (cross7 << 32) | (loLo6 & 0xFFFFFFFF);
uint128 r1222;
r1222.low64 = lower7;
r1222.high64 = upper7;
ret7 = r1222;
}
uint128 product7 = ret7;
acc += product7.low64 ^ product7.high64;
ulong h64 = acc;
h64 = h64 ^ (h64 >> 37);
h64 *= 0x165667919E3779F9UL;
h64 = h64 ^ (h64 >> 32);
return h64;
}
if (len <= XXH3_MIDSIZE_MAX)
{
ulong acc = ((ulong) len) * XXH_PRIME64_1;
int nbRounds = len / 16;
for (int i = 0; i < 8; i++)
{
byte* input1 = input + (16 * i);
byte* secret1 = secret + (16 * i);
ulong input_lo = *(ulong*) input1;
byte* ptr = input1 + 8;
ulong input_hi = *(ulong*) ptr;
byte* ptr1 = secret1 + 8;
ulong rhs = input_hi ^ (*(ulong*) ptr1 - seed64);
ulong lhs = input_lo ^ (*(ulong*) secret1 + seed64);
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong) (uint) (lhs & 0xFFFFFFFF) * (ulong) (uint) (y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong) (uint) (lhs >> 32) * (ulong) (uint) (y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong) (uint) (lhs & 0xFFFFFFFF) * (ulong) (uint) (y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong) (uint) (lhs >> 32) * (ulong) (uint) (y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
acc += product.low64 ^ product.high64;
}
ulong h64 = acc;
h64 = h64 ^ (h64 >> 37);
h64 *= 0x165667919E3779F9UL;
h64 = h64 ^ (h64 >> 32);
acc = h64;
for (int i = 8; i < nbRounds; i++)
{
byte* input1 = input + (16 * i);
byte* secret1 = secret + (16 * (i - 8)) + XXH3_MIDSIZE_STARTOFFSET;
ulong input_lo = *(ulong*) input1;
byte* ptr = input1 + 8;
ulong input_hi = *(ulong*) ptr;
byte* ptr1 = secret1 + 8;
ulong rhs = input_hi ^ (*(ulong*) ptr1 - seed64);
ulong lhs = input_lo ^ (*(ulong*) secret1 + seed64);
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong) (uint) (lhs & 0xFFFFFFFF) * (ulong) (uint) (y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong) (uint) (lhs >> 32) * (ulong) (uint) (y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong) (uint) (lhs & 0xFFFFFFFF) * (ulong) (uint) (y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong) (uint) (lhs >> 32) * (ulong) (uint) (y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
acc += product.low64 ^ product.high64;
}
byte* input2 = input + len - 16;
byte* secret2 = secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET;
ulong inputLo = *(ulong*) input2;
byte* ptr2 = input2 + 8;
ulong inputHi = *(ulong*) ptr2;
byte* ptr3 = secret2 + 8;
ulong rhs1 = inputHi ^ (*(ulong*) ptr3 - seed64);
ulong lhs1 = inputLo ^ (*(ulong*) secret2 + seed64);
uint128 ret1;
if (Bmi2.IsSupported)
{
ulong productLow;
ulong productHigh = Bmi2.X64.MultiplyNoFlags(lhs1, rhs1, &productLow);
uint128 r129;
r129.low64 = productLow;
r129.high64 = productHigh;
ret1 = r129;
}
else
{
ulong y4 = rhs1 & 0xFFFFFFFF;
ulong loLo = (ulong) (uint) (lhs1 & 0xFFFFFFFF) * (ulong) (uint) (y4);
ulong y5 = rhs1 & 0xFFFFFFFF;
ulong hiLo = (ulong) (uint) (lhs1 >> 32) * (ulong) (uint) (y5);
ulong y6 = rhs1 >> 32;
ulong loHi = (ulong) (uint) (lhs1 & 0xFFFFFFFF) * (ulong) (uint) (y6);
ulong y7 = rhs1 >> 32;
ulong hiHi = (ulong) (uint) (lhs1 >> 32) * (ulong) (uint) (y7);
ulong cross1 = (loLo >> 32) + (hiLo & 0xFFFFFFFF) + loHi;
ulong upper1 = (hiLo >> 32) + (cross1 >> 32) + hiHi;
ulong lower1 = (cross1 << 32) | (loLo & 0xFFFFFFFF);
uint128 r1210;
r1210.low64 = lower1;
r1210.high64 = upper1;
ret1 = r1210;
}
uint128 product1 = ret1;
acc += product1.low64 ^ product1.high64;
ulong h65 = acc;
h65 = h65 ^ (h65 >> 37);
h65 *= 0x165667919E3779F9UL;
h65 = h65 ^ (h65 >> 32);
return h65;
}
if (seed64 == 0)
{
ulong* acc = stackalloc ulong[8];
fixed (ulong* ptr = &XXH3_INIT_ACC[0])
{
acc[0] = ptr[0];
acc[1] = ptr[1];
acc[2] = ptr[2];
acc[3] = ptr[3];
acc[4] = ptr[4];
acc[5] = ptr[5];
acc[6] = ptr[6];
acc[7] = ptr[7];
}
int nbStripesPerBlock = (secretLen - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
int block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
int nb_blocks = (len - 1) / block_len;
for (int n = 0; n < nb_blocks; n++)
{
byte* input1 = input + n * block_len;
for (int n1 = 0; n1 < nbStripesPerBlock; n1++)
{
byte* inp = input1 + n1 * XXH_STRIPE_LEN;
byte* secret1 = secret + n1 * XXH_SECRET_CONSUME_RATE;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*) inp + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*) secret1 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) inp + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret1 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc;
byte* xinput = inp;
byte* xsecret = secret1;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong) (uint) (data_key & 0xFFFFFFFF) * (ulong) (uint) (y);
}
}
}
byte* secret3 = secret + secretLen - XXH_STRIPE_LEN;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
var prime32 = Vector256.Create(XXH_PRIME32_1);
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc + uint64_offset);
var shifted = Avx2.ShiftRightLogical(acc_vec, 47);
var data_vec = Avx2.Xor(acc_vec, shifted);
var key_vec = Avx2.LoadVector256((ulong*) secret3 + uint64_offset);
var data_key = Avx2.Xor(data_vec, key_vec).AsUInt32();
var data_key_hi = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var prod_lo = Avx2.Multiply(data_key, prime32);
var prod_hi = Avx2.Multiply(data_key_hi, prime32);
var result = Avx2.Add(prod_lo, Avx2.ShiftLeftLogical(prod_hi, 32));
Avx2.Store(acc + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
var prime32 = Vector128.Create(XXH_PRIME32_1);
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc + uint64_offset).AsUInt32();
var shifted = Sse2.ShiftRightLogical(acc_vec, 47);
var data_vec = Sse2.Xor(acc_vec, shifted);
var key_vec = Sse2.LoadVector128((uint*) secret3 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_hi = Sse2.Shuffle(data_key.AsUInt32(), _MM_SHUFFLE_0_3_0_1);
var prod_lo = Sse2.Multiply(data_key, prime32);
var prod_hi = Sse2.Multiply(data_key_hi, prime32);
var result = Sse2.Add(prod_lo, Sse2.ShiftLeftLogical(prod_hi, 32));
Sse2.Store(acc + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc;
byte* xsecret = secret3;
byte* ptr = xsecret + i * 8;
ulong key64 = *(ulong*) ptr;
ulong acc64 = xacc[i];
acc64 = acc64 ^ (acc64 >> 47);
acc64 ^= key64;
acc64 *= XXH_PRIME32_1;
xacc[i] = acc64;
}
}
}
int nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
byte* input2 = input + nb_blocks * block_len;
for (int n2 = 0; n2 < nbStripes; n2++)
{
byte* inp1 = input2 + n2 * XXH_STRIPE_LEN;
byte* secret1 = secret + n2 * XXH_SECRET_CONSUME_RATE;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*) inp1 + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*) secret1 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) inp1 + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret1 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc;
byte* xinput = inp1;
byte* xsecret = secret1;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong) (uint) (data_key & 0xFFFFFFFF) * (ulong) (uint) (y);
}
}
}
byte* p = input + len - XXH_STRIPE_LEN;
byte* secret2 = secret + secretLen - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*) p + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*) secret2 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) p + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret2 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc;
byte* xinput = p;
byte* xsecret = secret2;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong) (uint) (data_key & 0xFFFFFFFF) * (ulong) (uint) (y);
}
}
byte* secret4 = secret + XXH_SECRET_MERGEACCS_START;
ulong result64 = ((ulong) len) * XXH_PRIME64_1;
for (int i1 = 0; i1 < 4; i1++)
{
ulong* acc2 = acc + 2 * i1;
byte* secret1 = secret4 + 16 * i1;
byte* ptr = secret1 + 8;
ulong rhs = acc2[1] ^ *(ulong*) ptr;
ulong lhs = acc2[0] ^ *(ulong*) secret1;
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong) (uint) (lhs & 0xFFFFFFFF) * (ulong) (uint) (y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong) (uint) (lhs >> 32) * (ulong) (uint) (y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong) (uint) (lhs & 0xFFFFFFFF) * (ulong) (uint) (y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong) (uint) (lhs >> 32) * (ulong) (uint) (y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
result64 += product.low64 ^ product.high64;
}
ulong h64 = result64;
h64 = h64 ^ (h64 >> 37);
h64 *= 0x165667919E3779F9UL;
h64 = h64 ^ (h64 >> 32);
return h64;
}
int customSecretSize = XXH3_SECRET_DEFAULT_SIZE;
byte* customSecret = stackalloc byte[customSecretSize];
fixed (byte* ptr = &XXH3_SECRET[0])
{
for (int i1 = 0; i1 < customSecretSize; i1 += 8)
{
customSecret[i1] = ptr[i1];
customSecret[i1 + 1] = ptr[i1 + 1];
customSecret[i1 + 2] = ptr[i1 + 2];
customSecret[i1 + 3] = ptr[i1 + 3];
customSecret[i1 + 4] = ptr[i1 + 4];
customSecret[i1 + 5] = ptr[i1 + 5];
customSecret[i1 + 6] = ptr[i1 + 6];
customSecret[i1 + 7] = ptr[i1 + 7];
}
}
if (Avx2.IsSupported)
{
const int m256i_size = 32;
var seed = Vector256.Create(seed64, 0U - seed64, seed64, 0U - seed64);
fixed (byte* secret1 = &XXH3_SECRET[0])
{
for (int i = 0; i < XXH_SECRET_DEFAULT_SIZE / m256i_size; i++)
{
int uint64_offset = i * 4;
var src32 = Avx2.LoadVector256(((ulong*) secret1) + uint64_offset);
var dst32 = Avx2.Add(src32, seed);
Avx2.Store((ulong*) customSecret + uint64_offset, dst32);
}
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
var seed = Vector128.Create((long) seed64, (long) (0U - seed64));
fixed (byte* secret1 = &XXH3_SECRET[0])
{
for (int i = 0; i < XXH_SECRET_DEFAULT_SIZE / m128i_size; i++)
{
int uint64_offset = i * 2;
var src16 = Sse2.LoadVector128(((long*) secret1) + uint64_offset);
var dst16 = Sse2.Add(src16, seed);
Sse2.Store((long*) customSecret + uint64_offset, dst16);
}
}
}
else
{
fixed (byte* kSecretPtr = &XXH3_SECRET[0])
{
int nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
for (int i = 0; i < nbRounds; i++)
{
byte* ptr = kSecretPtr + 16 * i;
ulong lo = *(ulong*) ptr + seed64;
byte* ptr1 = kSecretPtr + 16 * i + 8;
ulong hi = *(ulong*) ptr1 - seed64;
byte* dst = (byte*) customSecret + 16 * i;
*(ulong*) dst = lo;
byte* dst1 = (byte*) customSecret + 16 * i + 8;
*(ulong*) dst1 = hi;
}
}
}
ulong* acc1 = stackalloc ulong[8];
fixed (ulong* ptr16 = &XXH3_INIT_ACC[0])
{
acc1[0] = ptr16[0];
acc1[1] = ptr16[1];
acc1[2] = ptr16[2];
acc1[3] = ptr16[3];
acc1[4] = ptr16[4];
acc1[5] = ptr16[5];
acc1[6] = ptr16[6];
acc1[7] = ptr16[7];
}
int nbStripesPerBlock1 = (customSecretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
int blockLen = XXH_STRIPE_LEN * nbStripesPerBlock1;
int nbBlocks = (len - 1) / blockLen;
for (int n1 = 0; n1 < nbBlocks; n1++)
{
byte* input1 = input + n1 * blockLen;
for (int n = 0; n < nbStripesPerBlock1; n++)
{
byte* inp = input1 + n * XXH_STRIPE_LEN;
byte* secret1 = customSecret + n * XXH_SECRET_CONSUME_RATE;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc1 + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*) inp + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*) secret1 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc1 + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc1 + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) inp + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret1 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc1 + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc1;
byte* xinput = inp;
byte* xsecret = secret1;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong) (uint) (data_key & 0xFFFFFFFF) * (ulong) (uint) (y);
}
}
}
byte* secret2 = customSecret + customSecretSize - XXH_STRIPE_LEN;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
var prime32 = Vector256.Create(XXH_PRIME32_1);
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc1 + uint64_offset);
var shifted = Avx2.ShiftRightLogical(acc_vec, 47);
var data_vec = Avx2.Xor(acc_vec, shifted);
var key_vec = Avx2.LoadVector256((ulong*) secret2 + uint64_offset);
var data_key = Avx2.Xor(data_vec, key_vec).AsUInt32();
var data_key_hi = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var prod_lo = Avx2.Multiply(data_key, prime32);
var prod_hi = Avx2.Multiply(data_key_hi, prime32);
var result = Avx2.Add(prod_lo, Avx2.ShiftLeftLogical(prod_hi, 32));
Avx2.Store(acc1 + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
var prime32 = Vector128.Create(XXH_PRIME32_1);
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc1 + uint64_offset).AsUInt32();
var shifted = Sse2.ShiftRightLogical(acc_vec, 47);
var data_vec = Sse2.Xor(acc_vec, shifted);
var key_vec = Sse2.LoadVector128((uint*) secret2 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_hi = Sse2.Shuffle(data_key.AsUInt32(), _MM_SHUFFLE_0_3_0_1);
var prod_lo = Sse2.Multiply(data_key, prime32);
var prod_hi = Sse2.Multiply(data_key_hi, prime32);
var result = Sse2.Add(prod_lo, Sse2.ShiftLeftLogical(prod_hi, 32));
Sse2.Store(acc1 + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc1;
byte* xsecret = secret2;
byte* ptr = xsecret + i * 8;
ulong key64 = *(ulong*) ptr;
ulong acc64 = xacc[i];
acc64 = acc64 ^ (acc64 >> 47);
acc64 ^= key64;
acc64 *= XXH_PRIME32_1;
xacc[i] = acc64;
}
}
}
int nbStripes1 = ((len - 1) - (blockLen * nbBlocks)) / XXH_STRIPE_LEN;
byte* input9 = input + nbBlocks * blockLen;
for (int n3 = 0; n3 < nbStripes1; n3++)
{
byte* inp2 = input9 + n3 * XXH_STRIPE_LEN;
byte* secret1 = customSecret + n3 * XXH_SECRET_CONSUME_RATE;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc1 + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*) inp2 + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*) secret1 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc1 + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc1 + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) inp2 + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret1 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc1 + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc1;
byte* xinput = inp2;
byte* xsecret = secret1;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong) (uint) (data_key & 0xFFFFFFFF) * (ulong) (uint) (y);
}
}
}
byte* p1 = input + len - XXH_STRIPE_LEN;
byte* secret9 = customSecret + customSecretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc1 + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*) p1 + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*) secret9 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc1 + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc1 + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) p1 + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret9 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc1 + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc1;
byte* xinput = p1;
byte* xsecret = secret9;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong) (uint) (data_key & 0xFFFFFFFF) * (ulong) (uint) (y);
}
}
byte* secret10 = customSecret + XXH_SECRET_MERGEACCS_START;
ulong result65 = ((ulong) len) * XXH_PRIME64_1;
for (int i2 = 0; i2 < 4; i2++)
{
ulong* acc = acc1 + 2 * i2;
byte* secret1 = secret10 + 16 * i2;
byte* ptr = secret1 + 8;
ulong rhs = acc[1] ^ *(ulong*) ptr;
ulong lhs = acc[0] ^ *(ulong*) secret1;
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong) (uint) (lhs & 0xFFFFFFFF) * (ulong) (uint) (y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong) (uint) (lhs >> 32) * (ulong) (uint) (y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong) (uint) (lhs & 0xFFFFFFFF) * (ulong) (uint) (y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong) (uint) (lhs >> 32) * (ulong) (uint) (y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
result65 += product.low64 ^ product.high64;
}
ulong h66 = result65;
h66 = h66 ^ (h66 >> 37);
h66 *= 0x165667919E3779F9UL;
h66 = h66 ^ (h66 >> 32);
return h66;
}
}
}