DTLib.XXHash/src/Standart.Hash.xxHash/__inline__xxHash128.cs
Oleksandr Melnyk d7cf848606 Inline 32 & 128
2022-06-09 23:22:22 +03:00

1834 lines
79 KiB
C#

/*
* This is the auto generated code.
* All function calls are inlined in XXH3_128bits_internal
* Please don't try to analyze it.
*/
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
namespace Standart.Hash.xxHash;
public static partial class xxHash128
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static unsafe uint128 __inline__XXH3_128bits_internal(byte* input, int len, ulong seed, byte* secret, int secretLen)
{
if (len <= 16)
{
if (len > 8)
{
byte* ptr = secret + 32;
byte* ptr1 = secret + 40;
ulong bitflipl1 = (*(ulong*) ptr ^ *(ulong*) ptr1) - seed;
byte* ptr2 = secret + 48;
byte* ptr3 = secret + 56;
ulong bitfliph1 = (*(ulong*) ptr2 ^ *(ulong*) ptr3) + seed;
ulong input_lo = *(ulong*) input;
byte* ptr4 = input + len - 8;
ulong input_hi = *(ulong*) ptr4;
ulong lhs = input_lo ^ input_hi ^ bitflipl1;
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, XXH_PRIME64_1, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong lo_lo = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(XXH_PRIME64_1 & 0xFFFFFFFF);
ulong hi_lo = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(XXH_PRIME64_1 & 0xFFFFFFFF);
ulong lo_hi = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(XXH_PRIME64_1 >> 32);
ulong hi_hi = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(XXH_PRIME64_1 >> 32);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 m128 = ret;
m128.low64 += (ulong) (len - 1) << 54;
input_hi ^= bitfliph1;
m128.high64 += input_hi + (ulong)(uint)(uint) input_hi * (ulong)(uint)(XXH_PRIME32_2 - 1);
m128.low64 ^= ((m128.high64 << 56) & 0xff00000000000000UL) |
((m128.high64 << 40) & 0x00ff000000000000UL) |
((m128.high64 << 24) & 0x0000ff0000000000UL) |
((m128.high64 << 8) & 0x000000ff00000000UL) |
((m128.high64 >> 8) & 0x00000000ff000000UL) |
((m128.high64 >> 24) & 0x0000000000ff0000UL) |
((m128.high64 >> 40) & 0x000000000000ff00UL) |
((m128.high64 >> 56) & 0x00000000000000ffUL);
uint128 ret1;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(m128.low64, XXH_PRIME64_2, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret1 = r128;
}
else
{
ulong lo_lo = (ulong)(uint)(m128.low64 & 0xFFFFFFFF) * (ulong)(uint)(XXH_PRIME64_2 & 0xFFFFFFFF);
ulong hi_lo = (ulong)(uint)(m128.low64 >> 32) * (ulong)(uint)(XXH_PRIME64_2 & 0xFFFFFFFF);
ulong lo_hi = (ulong)(uint)(m128.low64 & 0xFFFFFFFF) * (ulong)(uint)(XXH_PRIME64_2 >> 32);
ulong hi_hi = (ulong)(uint)(m128.low64 >> 32) * (ulong)(uint)(XXH_PRIME64_2 >> 32);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret1 = r128;
}
uint128 h129 = ret1;
h129.high64 += m128.high64 * XXH_PRIME64_2;
ulong h64 = h129.low64;
h64 = h64 ^ (h64 >> 37);
h64 *= 0x165667919E3779F9UL;
h64 = h64 ^ (h64 >> 32);
h129.low64 = h64;
ulong h65 = h129.high64;
h65 = h65 ^ (h65 >> 37);
h65 *= 0x165667919E3779F9UL;
h65 = h65 ^ (h65 >> 32);
h129.high64 = h65;
return h129;
}
if (len >= 4)
{
ulong seed1 = seed;
uint x = (uint) seed1;
seed1 ^= (ulong) (((x << 24) & 0xff000000 ) |
((x << 8) & 0x00ff0000 ) |
((x >> 8) & 0x0000ff00 ) |
((x >> 24) & 0x000000ff )) << 32;
uint input_lo = *(uint*) input;
byte* ptr2 = input + len - 4;
uint input_hi = *(uint*) ptr2;
ulong input_64 = input_lo + ((ulong) input_hi << 32);
byte* ptr = secret + 16;
byte* ptr1 = secret + 24;
ulong bitflip = (*(ulong*) ptr ^ *(ulong*) ptr1) + seed1;
ulong keyed = input_64 ^ bitflip;
ulong rhs = XXH_PRIME64_1 + ((ulong) len << 2);
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(keyed, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong)(uint)(keyed & 0xFFFFFFFF) * (ulong)(uint)(y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong)(uint)(keyed >> 32) * (ulong)(uint)(y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong)(uint)(keyed & 0xFFFFFFFF) * (ulong)(uint)(y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong)(uint)(keyed >> 32) * (ulong)(uint)(y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 m128 = ret;
m128.high64 += (m128.low64 << 1);
m128.low64 ^= (m128.high64 >> 3);
m128.low64 = m128.low64 ^ (m128.low64 >> 35);
m128.low64 *= 0x9FB21C651E98DF25UL;
m128.low64 = m128.low64 ^ (m128.low64 >> 28);
ulong h64 = m128.high64;
h64 = h64 ^ (h64 >> 37);
h64 *= 0x165667919E3779F9UL;
h64 = h64 ^ (h64 >> 32);
m128.high64 = h64;
return m128;
}
if (len != 0)
{
byte c1 = input[0];
byte c2 = input[len >> 1];
byte c3 = input[len - 1];
uint combinedl = ((uint) c1 << 16) |
((uint) c2 << 24) |
((uint) c3 << 0) |
((uint) len << 8);
uint x = ((combinedl << 24) & 0xff000000 ) |
((combinedl << 8) & 0x00ff0000 ) |
((combinedl >> 8) & 0x0000ff00 ) |
((combinedl >> 24) & 0x000000ff );
uint combinedh = (x << 13) | (x >> (32 - 13));
byte* ptr = secret + 4;
ulong bitflipl1 = (*(uint*) secret ^ *(uint*) ptr) + seed;
byte* ptr1 = secret + 8;
byte* ptr2 = secret + 12;
ulong bitfliph1 = (*(uint*) ptr1 ^ *(uint*) ptr2) - seed;
ulong keyed_lo = (ulong) combinedl ^ bitflipl1;
ulong keyed_hi = (ulong) combinedh ^ bitfliph1;
uint128 h129;
ulong hash = keyed_lo;
hash ^= hash >> 33;
hash *= XXH_PRIME64_2;
hash ^= hash >> 29;
hash *= XXH_PRIME64_3;
hash ^= hash >> 32;
h129.low64 = hash;
ulong hash1 = keyed_hi;
hash1 ^= hash1 >> 33;
hash1 *= XXH_PRIME64_2;
hash1 ^= hash1 >> 29;
hash1 *= XXH_PRIME64_3;
hash1 ^= hash1 >> 32;
h129.high64 = hash1;
return h129;
}
uint128 h128;
byte* ptr5 = secret + 64;
byte* ptr6 = secret + 72;
ulong bitflipl = *(ulong*) ptr5 ^ *(ulong*) ptr6;
byte* ptr7 = secret + 80;
byte* ptr8 = secret + 88;
ulong bitfliph = *(ulong*) ptr7 ^ *(ulong*) ptr8;
ulong hash2 = seed ^ bitflipl;
hash2 ^= hash2 >> 33;
hash2 *= XXH_PRIME64_2;
hash2 ^= hash2 >> 29;
hash2 *= XXH_PRIME64_3;
hash2 ^= hash2 >> 32;
h128.low64 = hash2;
ulong hash3 = seed ^ bitfliph;
hash3 ^= hash3 >> 33;
hash3 *= XXH_PRIME64_2;
hash3 ^= hash3 >> 29;
hash3 *= XXH_PRIME64_3;
hash3 ^= hash3 >> 32;
h128.high64 = hash3;
return h128;
}
if (len <= 128)
{
uint128 acc;
acc.low64 = (ulong) len * XXH_PRIME64_1;
acc.high64 = 0;
if (len > 32) {
if (len > 64) {
if (len > 96)
{
uint128 acc1 = acc;
byte* input1 = input+48;
byte* input2 = input+len-64;
byte* secret1 = secret+96;
byte* secret4 = secret1 + 0;
ulong input_lo = *(ulong*) input1;
byte* ptr8 = input1 + 8;
ulong input_hi = *(ulong*) ptr8;
byte* ptr9 = secret4 + 8;
ulong lhs = input_lo ^ (*(ulong*) secret4 + seed);
ulong rhs = input_hi ^ (*(ulong*) ptr9 - seed);
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
acc1.low64 += product.low64 ^ product.high64;
byte* ptr = input2 + 8;
acc1.low64 ^= *(ulong*) input2 + *(ulong*) ptr;
byte* secret5 = secret1 + 16;
ulong inputLo = *(ulong*) input2;
byte* ptr10 = input2 + 8;
ulong inputHi = *(ulong*) ptr10;
byte* ptr11 = secret5 + 8;
ulong lhs1 = inputLo ^ (*(ulong*) secret5 + seed);
ulong rhs1 = inputHi ^ (*(ulong*) ptr11 - seed);
uint128 ret1;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs1, rhs1, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret1 = r128;
}
else
{
ulong y4 = rhs1 & 0xFFFFFFFF;
ulong loLo = (ulong)(uint)(lhs1 & 0xFFFFFFFF) * (ulong)(uint)(y4);
ulong y5 = rhs1 & 0xFFFFFFFF;
ulong hiLo = (ulong)(uint)(lhs1 >> 32) * (ulong)(uint)(y5);
ulong y6 = rhs1 >> 32;
ulong loHi = (ulong)(uint)(lhs1 & 0xFFFFFFFF) * (ulong)(uint)(y6);
ulong y7 = rhs1 >> 32;
ulong hiHi = (ulong)(uint)(lhs1 >> 32) * (ulong)(uint)(y7);
ulong cross1 = (loLo >> 32) + (hiLo & 0xFFFFFFFF) + loHi;
ulong upper1 = (hiLo >> 32) + (cross1 >> 32) + hiHi;
ulong lower1 = (cross1 << 32) | (loLo & 0xFFFFFFFF);
uint128 r129;
r129.low64 = lower1;
r129.high64 = upper1;
ret1 = r129;
}
uint128 product1 = ret1;
acc1.high64 += product1.low64 ^ product1.high64;
byte* ptr1 = input1 + 8;
acc1.high64 ^= *(ulong*) input1 + *(ulong*) ptr1;
acc = acc1;
}
uint128 acc2 = acc;
byte* input3 = input+32;
byte* input4 = input+len-48;
byte* secret2 = secret+64;
byte* secret6 = secret2 + 0;
ulong inputLo1 = *(ulong*) input3;
byte* ptr12 = input3 + 8;
ulong inputHi1 = *(ulong*) ptr12;
byte* ptr13 = secret6 + 8;
ulong lhs2 = inputLo1 ^ (*(ulong*) secret6 + seed);
ulong rhs2 = inputHi1 ^ (*(ulong*) ptr13 - seed);
uint128 ret2;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs2, rhs2, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret2 = r128;
}
else
{
ulong y8 = rhs2 & 0xFFFFFFFF;
ulong loLo1 = (ulong)(uint)(lhs2 & 0xFFFFFFFF) * (ulong)(uint)(y8);
ulong y9 = rhs2 & 0xFFFFFFFF;
ulong hiLo1 = (ulong)(uint)(lhs2 >> 32) * (ulong)(uint)(y9);
ulong y10 = rhs2 >> 32;
ulong loHi1 = (ulong)(uint)(lhs2 & 0xFFFFFFFF) * (ulong)(uint)(y10);
ulong y11 = rhs2 >> 32;
ulong hiHi1 = (ulong)(uint)(lhs2 >> 32) * (ulong)(uint)(y11);
ulong cross2 = (loLo1 >> 32) + (hiLo1 & 0xFFFFFFFF) + loHi1;
ulong upper2 = (hiLo1 >> 32) + (cross2 >> 32) + hiHi1;
ulong lower2 = (cross2 << 32) | (loLo1 & 0xFFFFFFFF);
uint128 r1210;
r1210.low64 = lower2;
r1210.high64 = upper2;
ret2 = r1210;
}
uint128 product2 = ret2;
acc2.low64 += product2.low64 ^ product2.high64;
byte* ptr2 = input4 + 8;
acc2.low64 ^= *(ulong*) input4 + *(ulong*) ptr2;
byte* secret7 = secret2 + 16;
ulong inputLo2 = *(ulong*) input4;
byte* ptr14 = input4 + 8;
ulong inputHi2 = *(ulong*) ptr14;
byte* ptr15 = secret7 + 8;
ulong lhs3 = inputLo2 ^ (*(ulong*) secret7 + seed);
ulong rhs3 = inputHi2 ^ (*(ulong*) ptr15 - seed);
uint128 ret3;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs3, rhs3, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret3 = r128;
}
else
{
ulong y12 = rhs3 & 0xFFFFFFFF;
ulong loLo2 = (ulong)(uint)(lhs3 & 0xFFFFFFFF) * (ulong)(uint)(y12);
ulong y13 = rhs3 & 0xFFFFFFFF;
ulong hiLo2 = (ulong)(uint)(lhs3 >> 32) * (ulong)(uint)(y13);
ulong y14 = rhs3 >> 32;
ulong loHi2 = (ulong)(uint)(lhs3 & 0xFFFFFFFF) * (ulong)(uint)(y14);
ulong y15 = rhs3 >> 32;
ulong hiHi2 = (ulong)(uint)(lhs3 >> 32) * (ulong)(uint)(y15);
ulong cross3 = (loLo2 >> 32) + (hiLo2 & 0xFFFFFFFF) + loHi2;
ulong upper3 = (hiLo2 >> 32) + (cross3 >> 32) + hiHi2;
ulong lower3 = (cross3 << 32) | (loLo2 & 0xFFFFFFFF);
uint128 r1211;
r1211.low64 = lower3;
r1211.high64 = upper3;
ret3 = r1211;
}
uint128 product3 = ret3;
acc2.high64 += product3.low64 ^ product3.high64;
byte* ptr3 = input3 + 8;
acc2.high64 ^= *(ulong*) input3 + *(ulong*) ptr3;
acc = acc2;
}
uint128 acc3 = acc;
byte* input5 = input+16;
byte* input6 = input+len-32;
byte* secret3 = secret+32;
byte* secret8 = secret3 + 0;
ulong inputLo3 = *(ulong*) input5;
byte* ptr16 = input5 + 8;
ulong inputHi3 = *(ulong*) ptr16;
byte* ptr17 = secret8 + 8;
ulong lhs4 = inputLo3 ^ (*(ulong*) secret8 + seed);
ulong rhs4 = inputHi3 ^ (*(ulong*) ptr17 - seed);
uint128 ret4;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs4, rhs4, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret4 = r128;
}
else
{
ulong y16 = rhs4 & 0xFFFFFFFF;
ulong loLo3 = (ulong)(uint)(lhs4 & 0xFFFFFFFF) * (ulong)(uint)(y16);
ulong y17 = rhs4 & 0xFFFFFFFF;
ulong hiLo3 = (ulong)(uint)(lhs4 >> 32) * (ulong)(uint)(y17);
ulong y18 = rhs4 >> 32;
ulong loHi3 = (ulong)(uint)(lhs4 & 0xFFFFFFFF) * (ulong)(uint)(y18);
ulong y19 = rhs4 >> 32;
ulong hiHi3 = (ulong)(uint)(lhs4 >> 32) * (ulong)(uint)(y19);
ulong cross4 = (loLo3 >> 32) + (hiLo3 & 0xFFFFFFFF) + loHi3;
ulong upper4 = (hiLo3 >> 32) + (cross4 >> 32) + hiHi3;
ulong lower4 = (cross4 << 32) | (loLo3 & 0xFFFFFFFF);
uint128 r1212;
r1212.low64 = lower4;
r1212.high64 = upper4;
ret4 = r1212;
}
uint128 product4 = ret4;
acc3.low64 += product4.low64 ^ product4.high64;
byte* ptr4 = input6 + 8;
acc3.low64 ^= *(ulong*) input6 + *(ulong*) ptr4;
byte* secret9 = secret3 + 16;
ulong inputLo4 = *(ulong*) input6;
byte* ptr18 = input6 + 8;
ulong inputHi4 = *(ulong*) ptr18;
byte* ptr19 = secret9 + 8;
ulong lhs5 = inputLo4 ^ (*(ulong*) secret9 + seed);
ulong rhs5 = inputHi4 ^ (*(ulong*) ptr19 - seed);
uint128 ret5;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs5, rhs5, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret5 = r128;
}
else
{
ulong y20 = rhs5 & 0xFFFFFFFF;
ulong loLo4 = (ulong)(uint)(lhs5 & 0xFFFFFFFF) * (ulong)(uint)(y20);
ulong y21 = rhs5 & 0xFFFFFFFF;
ulong hiLo4 = (ulong)(uint)(lhs5 >> 32) * (ulong)(uint)(y21);
ulong y22 = rhs5 >> 32;
ulong loHi4 = (ulong)(uint)(lhs5 & 0xFFFFFFFF) * (ulong)(uint)(y22);
ulong y23 = rhs5 >> 32;
ulong hiHi4 = (ulong)(uint)(lhs5 >> 32) * (ulong)(uint)(y23);
ulong cross5 = (loLo4 >> 32) + (hiLo4 & 0xFFFFFFFF) + loHi4;
ulong upper5 = (hiLo4 >> 32) + (cross5 >> 32) + hiHi4;
ulong lower5 = (cross5 << 32) | (loLo4 & 0xFFFFFFFF);
uint128 r1213;
r1213.low64 = lower5;
r1213.high64 = upper5;
ret5 = r1213;
}
uint128 product5 = ret5;
acc3.high64 += product5.low64 ^ product5.high64;
byte* ptr5 = input5 + 8;
acc3.high64 ^= *(ulong*) input5 + *(ulong*) ptr5;
acc = acc3;
}
uint128 acc4 = acc;
byte* input7 = input+len-16;
byte* secret10 = secret + 0;
ulong inputLo5 = *(ulong*) input;
byte* ptr20 = input + 8;
ulong inputHi5 = *(ulong*) ptr20;
byte* ptr21 = secret10 + 8;
ulong lhs6 = inputLo5 ^ (*(ulong*) secret10 + seed);
ulong rhs6 = inputHi5 ^ (*(ulong*) ptr21 - seed);
uint128 ret6;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs6, rhs6, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret6 = r128;
}
else
{
ulong y24 = rhs6 & 0xFFFFFFFF;
ulong loLo5 = (ulong)(uint)(lhs6 & 0xFFFFFFFF) * (ulong)(uint)(y24);
ulong y25 = rhs6 & 0xFFFFFFFF;
ulong hiLo5 = (ulong)(uint)(lhs6 >> 32) * (ulong)(uint)(y25);
ulong y26 = rhs6 >> 32;
ulong loHi5 = (ulong)(uint)(lhs6 & 0xFFFFFFFF) * (ulong)(uint)(y26);
ulong y27 = rhs6 >> 32;
ulong hiHi5 = (ulong)(uint)(lhs6 >> 32) * (ulong)(uint)(y27);
ulong cross6 = (loLo5 >> 32) + (hiLo5 & 0xFFFFFFFF) + loHi5;
ulong upper6 = (hiLo5 >> 32) + (cross6 >> 32) + hiHi5;
ulong lower6 = (cross6 << 32) | (loLo5 & 0xFFFFFFFF);
uint128 r1214;
r1214.low64 = lower6;
r1214.high64 = upper6;
ret6 = r1214;
}
uint128 product6 = ret6;
acc4.low64 += product6.low64 ^ product6.high64;
byte* ptr6 = input7 + 8;
acc4.low64 ^= *(ulong*) input7 + *(ulong*) ptr6;
byte* secret11 = secret + 16;
ulong inputLo6 = *(ulong*) input7;
byte* ptr22 = input7 + 8;
ulong inputHi6 = *(ulong*) ptr22;
byte* ptr23 = secret11 + 8;
ulong lhs7 = inputLo6 ^ (*(ulong*) secret11 + seed);
ulong rhs7 = inputHi6 ^ (*(ulong*) ptr23 - seed);
uint128 ret7;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs7, rhs7, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret7 = r128;
}
else
{
ulong y28 = rhs7 & 0xFFFFFFFF;
ulong loLo6 = (ulong)(uint)(lhs7 & 0xFFFFFFFF) * (ulong)(uint)(y28);
ulong y29 = rhs7 & 0xFFFFFFFF;
ulong hiLo6 = (ulong)(uint)(lhs7 >> 32) * (ulong)(uint)(y29);
ulong y30 = rhs7 >> 32;
ulong loHi6 = (ulong)(uint)(lhs7 & 0xFFFFFFFF) * (ulong)(uint)(y30);
ulong y31 = rhs7 >> 32;
ulong hiHi6 = (ulong)(uint)(lhs7 >> 32) * (ulong)(uint)(y31);
ulong cross7 = (loLo6 >> 32) + (hiLo6 & 0xFFFFFFFF) + loHi6;
ulong upper7 = (hiLo6 >> 32) + (cross7 >> 32) + hiHi6;
ulong lower7 = (cross7 << 32) | (loLo6 & 0xFFFFFFFF);
uint128 r1215;
r1215.low64 = lower7;
r1215.high64 = upper7;
ret7 = r1215;
}
uint128 product7 = ret7;
acc4.high64 += product7.low64 ^ product7.high64;
byte* ptr7 = input + 8;
acc4.high64 ^= *(ulong*) input + *(ulong*) ptr7;
acc = acc4;
uint128 h128;
h128.low64 = acc.low64 + acc.high64;
h128.high64 = (acc.low64 * XXH_PRIME64_1)
+ (acc.high64 * XXH_PRIME64_4)
+ (((ulong) len - seed) * XXH_PRIME64_2);
ulong h64 = h128.low64;
h64 = h64 ^ (h64 >> 37);
h64 *= 0x165667919E3779F9UL;
h64 = h64 ^ (h64 >> 32);
h128.low64 = h64;
ulong h65 = h128.high64;
h65 = h65 ^ (h65 >> 37);
h65 *= 0x165667919E3779F9UL;
h65 = h65 ^ (h65 >> 32);
h128.high64 = (ulong) 0 - h65;
return h128;
}
if (len <= XXH3_MIDSIZE_MAX)
{
uint128 acc;
int nbRounds = len / 32;
acc.low64 = (ulong) len * XXH_PRIME64_1;
acc.high64 = 0;
for (int i = 0; i < 4; i++)
{
uint128 acc1 = acc;
byte* input1 = input + (32 * i);
byte* input2 = input + (32 * i) + 16;
byte* secret1 = secret + (32 * i);
byte* secret3 = secret1 + 0;
ulong input_lo = *(ulong*) input1;
byte* ptr4 = input1 + 8;
ulong input_hi = *(ulong*) ptr4;
byte* ptr5 = secret3 + 8;
ulong lhs = input_lo ^ (*(ulong*) secret3 + seed);
ulong rhs = input_hi ^ (*(ulong*) ptr5 - seed);
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
acc1.low64 += product.low64 ^ product.high64;
byte* ptr = input2 + 8;
acc1.low64 ^= *(ulong*) input2 + *(ulong*) ptr;
byte* secret4 = secret1 + 16;
ulong inputLo = *(ulong*) input2;
byte* ptr6 = input2 + 8;
ulong inputHi = *(ulong*) ptr6;
byte* ptr7 = secret4 + 8;
ulong lhs1 = inputLo ^ (*(ulong*) secret4 + seed);
ulong rhs1 = inputHi ^ (*(ulong*) ptr7 - seed);
uint128 ret1;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs1, rhs1, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret1 = r128;
}
else
{
ulong y4 = rhs1 & 0xFFFFFFFF;
ulong loLo = (ulong)(uint)(lhs1 & 0xFFFFFFFF) * (ulong)(uint)(y4);
ulong y5 = rhs1 & 0xFFFFFFFF;
ulong hiLo = (ulong)(uint)(lhs1 >> 32) * (ulong)(uint)(y5);
ulong y6 = rhs1 >> 32;
ulong loHi = (ulong)(uint)(lhs1 & 0xFFFFFFFF) * (ulong)(uint)(y6);
ulong y7 = rhs1 >> 32;
ulong hiHi = (ulong)(uint)(lhs1 >> 32) * (ulong)(uint)(y7);
ulong cross1 = (loLo >> 32) + (hiLo & 0xFFFFFFFF) + loHi;
ulong upper1 = (hiLo >> 32) + (cross1 >> 32) + hiHi;
ulong lower1 = (cross1 << 32) | (loLo & 0xFFFFFFFF);
uint128 r129;
r129.low64 = lower1;
r129.high64 = upper1;
ret1 = r129;
}
uint128 product1 = ret1;
acc1.high64 += product1.low64 ^ product1.high64;
byte* ptr1 = input1 + 8;
acc1.high64 ^= *(ulong*) input1 + *(ulong*) ptr1;
acc = acc1;
}
ulong h64 = acc.low64;
h64 = h64 ^ (h64 >> 37);
h64 *= 0x165667919E3779F9UL;
h64 = h64 ^ (h64 >> 32);
acc.low64 = h64;
ulong h65 = acc.high64;
h65 = h65 ^ (h65 >> 37);
h65 *= 0x165667919E3779F9UL;
h65 = h65 ^ (h65 >> 32);
acc.high64 = h65;
for (int i = 4 ; i < nbRounds; i++)
{
uint128 acc1 = acc;
byte* input1 = input + (32 * i);
byte* input2 = input + (32 * i) + 16;
byte* secret1 = secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4));
byte* secret3 = secret1 + 0;
ulong input_lo = *(ulong*) input1;
byte* ptr4 = input1 + 8;
ulong input_hi = *(ulong*) ptr4;
byte* ptr5 = secret3 + 8;
ulong lhs = input_lo ^ (*(ulong*) secret3 + seed);
ulong rhs = input_hi ^ (*(ulong*) ptr5 - seed);
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
acc1.low64 += product.low64 ^ product.high64;
byte* ptr = input2 + 8;
acc1.low64 ^= *(ulong*) input2 + *(ulong*) ptr;
byte* secret4 = secret1 + 16;
ulong inputLo = *(ulong*) input2;
byte* ptr6 = input2 + 8;
ulong inputHi = *(ulong*) ptr6;
byte* ptr7 = secret4 + 8;
ulong lhs1 = inputLo ^ (*(ulong*) secret4 + seed);
ulong rhs1 = inputHi ^ (*(ulong*) ptr7 - seed);
uint128 ret1;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs1, rhs1, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret1 = r128;
}
else
{
ulong y4 = rhs1 & 0xFFFFFFFF;
ulong loLo = (ulong)(uint)(lhs1 & 0xFFFFFFFF) * (ulong)(uint)(y4);
ulong y5 = rhs1 & 0xFFFFFFFF;
ulong hiLo = (ulong)(uint)(lhs1 >> 32) * (ulong)(uint)(y5);
ulong y6 = rhs1 >> 32;
ulong loHi = (ulong)(uint)(lhs1 & 0xFFFFFFFF) * (ulong)(uint)(y6);
ulong y7 = rhs1 >> 32;
ulong hiHi = (ulong)(uint)(lhs1 >> 32) * (ulong)(uint)(y7);
ulong cross1 = (loLo >> 32) + (hiLo & 0xFFFFFFFF) + loHi;
ulong upper1 = (hiLo >> 32) + (cross1 >> 32) + hiHi;
ulong lower1 = (cross1 << 32) | (loLo & 0xFFFFFFFF);
uint128 r129;
r129.low64 = lower1;
r129.high64 = upper1;
ret1 = r129;
}
uint128 product1 = ret1;
acc1.high64 += product1.low64 ^ product1.high64;
byte* ptr1 = input1 + 8;
acc1.high64 ^= *(ulong*) input1 + *(ulong*) ptr1;
acc = acc1;
}
uint128 acc2 = acc;
byte* input3 = input + len - 16;
byte* input4 = input + len - 32;
byte* secret2 = secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16;
ulong seed1 = 0UL - seed;
byte* secret5 = secret2 + 0;
ulong inputLo1 = *(ulong*) input3;
byte* ptr8 = input3 + 8;
ulong inputHi1 = *(ulong*) ptr8;
byte* ptr9 = secret5 + 8;
ulong lhs2 = inputLo1 ^ (*(ulong*) secret5 + seed1);
ulong rhs2 = inputHi1 ^ (*(ulong*) ptr9 - seed1);
uint128 ret2;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs2, rhs2, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret2 = r128;
}
else
{
ulong y8 = rhs2 & 0xFFFFFFFF;
ulong loLo1 = (ulong)(uint)(lhs2 & 0xFFFFFFFF) * (ulong)(uint)(y8);
ulong y9 = rhs2 & 0xFFFFFFFF;
ulong hiLo1 = (ulong)(uint)(lhs2 >> 32) * (ulong)(uint)(y9);
ulong y10 = rhs2 >> 32;
ulong loHi1 = (ulong)(uint)(lhs2 & 0xFFFFFFFF) * (ulong)(uint)(y10);
ulong y11 = rhs2 >> 32;
ulong hiHi1 = (ulong)(uint)(lhs2 >> 32) * (ulong)(uint)(y11);
ulong cross2 = (loLo1 >> 32) + (hiLo1 & 0xFFFFFFFF) + loHi1;
ulong upper2 = (hiLo1 >> 32) + (cross2 >> 32) + hiHi1;
ulong lower2 = (cross2 << 32) | (loLo1 & 0xFFFFFFFF);
uint128 r1210;
r1210.low64 = lower2;
r1210.high64 = upper2;
ret2 = r1210;
}
uint128 product2 = ret2;
acc2.low64 += product2.low64 ^ product2.high64;
byte* ptr2 = input4 + 8;
acc2.low64 ^= *(ulong*) input4 + *(ulong*) ptr2;
byte* secret6 = secret2 + 16;
ulong inputLo2 = *(ulong*) input4;
byte* ptr10 = input4 + 8;
ulong inputHi2 = *(ulong*) ptr10;
byte* ptr11 = secret6 + 8;
ulong lhs3 = inputLo2 ^ (*(ulong*) secret6 + seed1);
ulong rhs3 = inputHi2 ^ (*(ulong*) ptr11 - seed1);
uint128 ret3;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs3, rhs3, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret3 = r128;
}
else
{
ulong y12 = rhs3 & 0xFFFFFFFF;
ulong loLo2 = (ulong)(uint)(lhs3 & 0xFFFFFFFF) * (ulong)(uint)(y12);
ulong y13 = rhs3 & 0xFFFFFFFF;
ulong hiLo2 = (ulong)(uint)(lhs3 >> 32) * (ulong)(uint)(y13);
ulong y14 = rhs3 >> 32;
ulong loHi2 = (ulong)(uint)(lhs3 & 0xFFFFFFFF) * (ulong)(uint)(y14);
ulong y15 = rhs3 >> 32;
ulong hiHi2 = (ulong)(uint)(lhs3 >> 32) * (ulong)(uint)(y15);
ulong cross3 = (loLo2 >> 32) + (hiLo2 & 0xFFFFFFFF) + loHi2;
ulong upper3 = (hiLo2 >> 32) + (cross3 >> 32) + hiHi2;
ulong lower3 = (cross3 << 32) | (loLo2 & 0xFFFFFFFF);
uint128 r1211;
r1211.low64 = lower3;
r1211.high64 = upper3;
ret3 = r1211;
}
uint128 product3 = ret3;
acc2.high64 += product3.low64 ^ product3.high64;
byte* ptr3 = input3 + 8;
acc2.high64 ^= *(ulong*) input3 + *(ulong*) ptr3;
acc = acc2;
uint128 h128;
h128.low64 = acc.low64 + acc.high64;
h128.high64 = (acc.low64 * XXH_PRIME64_1)
+ (acc.high64 * XXH_PRIME64_4)
+ (((ulong)len - seed) * XXH_PRIME64_2);
ulong h66 = h128.low64;
h66 = h66 ^ (h66 >> 37);
h66 *= 0x165667919E3779F9UL;
h66 = h66 ^ (h66 >> 32);
h128.low64 = h66;
ulong h67 = h128.high64;
h67 = h67 ^ (h67 >> 37);
h67 *= 0x165667919E3779F9UL;
h67 = h67 ^ (h67 >> 32);
h128.high64 = (ulong)0 - h67;
return h128;
}
if (seed == 0)
{
ulong* acc = stackalloc ulong[8];
fixed (ulong* ptr = &XXH3_INIT_ACC[0])
{
acc[0] = ptr[0];
acc[1] = ptr[1];
acc[2] = ptr[2];
acc[3] = ptr[3];
acc[4] = ptr[4];
acc[5] = ptr[5];
acc[6] = ptr[6];
acc[7] = ptr[7];
}
int nbStripesPerBlock = (secretLen - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
int block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
int nb_blocks = (len - 1) / block_len;
for (int n = 0; n < nb_blocks; n++) {
byte* input1 = input + n * block_len;
for (int n1 = 0; n1 < nbStripesPerBlock; n1++ ) {
byte* inp = input1 + n1 * XXH_STRIPE_LEN;
byte* secret1 = secret + n1 * XXH_SECRET_CONSUME_RATE;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*)inp + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*)secret1 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) inp + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret1 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc;
byte* xinput = inp;
byte* xsecret = secret1;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong)(uint)(data_key & 0xFFFFFFFF) * (ulong)(uint)(y);
}
}
}
byte* secret3 = secret + secretLen - XXH_STRIPE_LEN;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
var prime32 = Vector256.Create(XXH_PRIME32_1);
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc + uint64_offset);
var shifted = Avx2.ShiftRightLogical(acc_vec, 47);
var data_vec = Avx2.Xor(acc_vec, shifted);
var key_vec = Avx2.LoadVector256((ulong*) secret3 + uint64_offset);
var data_key = Avx2.Xor(data_vec, key_vec).AsUInt32();
var data_key_hi = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var prod_lo = Avx2.Multiply(data_key, prime32);
var prod_hi = Avx2.Multiply(data_key_hi, prime32);
var result = Avx2.Add(prod_lo, Avx2.ShiftLeftLogical(prod_hi, 32));
Avx2.Store(acc + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
var prime32 = Vector128.Create(XXH_PRIME32_1);
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc + uint64_offset).AsUInt32();
var shifted = Sse2.ShiftRightLogical(acc_vec, 47);
var data_vec = Sse2.Xor(acc_vec, shifted);
var key_vec = Sse2.LoadVector128((uint*) secret3 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_hi = Sse2.Shuffle(data_key.AsUInt32(), _MM_SHUFFLE_0_3_0_1);
var prod_lo = Sse2.Multiply(data_key, prime32);
var prod_hi = Sse2.Multiply(data_key_hi, prime32);
var result = Sse2.Add(prod_lo, Sse2.ShiftLeftLogical(prod_hi, 32));
Sse2.Store(acc + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc;
byte* xsecret = secret3;
byte* ptr = xsecret + i * 8;
ulong key64 = *(ulong*) ptr;
ulong acc64 = xacc[i];
acc64 = acc64 ^ (acc64 >> 47);
acc64 ^= key64;
acc64 *= XXH_PRIME32_1;
xacc[i] = acc64;
}
}
}
int nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
byte* input2 = input + nb_blocks * block_len;
for (int n2 = 0; n2 < nbStripes; n2++ ) {
byte* inp1 = input2 + n2 * XXH_STRIPE_LEN;
byte* secret1 = secret + n2 * XXH_SECRET_CONSUME_RATE;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*)inp1 + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*)secret1 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) inp1 + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret1 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc;
byte* xinput = inp1;
byte* xsecret = secret1;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong)(uint)(data_key & 0xFFFFFFFF) * (ulong)(uint)(y);
}
}
}
byte* p = input + len - XXH_STRIPE_LEN;
byte* secret2 = secret + secretLen - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*)p + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*)secret2 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) p + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret2 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc;
byte* xinput = p;
byte* xsecret = secret2;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong)(uint)(data_key & 0xFFFFFFFF) * (ulong)(uint)(y);
}
}
uint128 uint128;
byte* secret4 = secret + XXH_SECRET_MERGEACCS_START;
ulong result64 = (ulong)len * XXH_PRIME64_1;
for (int i1 = 0; i1 < 4; i1++)
{
ulong* acc1 = acc + 2 * i1;
byte* secret1 = secret4 + 16 * i1;
byte* ptr = secret1+8;
ulong lhs = acc1[0] ^ *(ulong*) secret1;
ulong rhs = acc1[1] ^ *(ulong*) ptr;
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
result64 += product.low64 ^ product.high64;
}
ulong h64 = result64;
h64 = h64 ^ (h64 >> 37);
h64 *= 0x165667919E3779F9UL;
h64 = h64 ^ (h64 >> 32);
uint128.low64 = h64;
byte* secret5 = secret + secretLen - XXH3_ACC_SIZE - XXH_SECRET_MERGEACCS_START;
ulong result65 = ~((ulong)len * XXH_PRIME64_2);
for (int i2 = 0; i2 < 4; i2++)
{
ulong* acc1 = acc + 2 * i2;
byte* secret1 = secret5 + 16 * i2;
byte* ptr = secret1+8;
ulong lhs = acc1[0] ^ *(ulong*) secret1;
ulong rhs = acc1[1] ^ *(ulong*) ptr;
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
result65 += product.low64 ^ product.high64;
}
ulong h65 = result65;
h65 = h65 ^ (h65 >> 37);
h65 *= 0x165667919E3779F9UL;
h65 = h65 ^ (h65 >> 32);
uint128.high64 = h65;
return uint128;
}
int customSecretSize = XXH3_SECRET_DEFAULT_SIZE;
byte* customSecret = stackalloc byte[customSecretSize];
fixed (byte* ptr24 = &XXH3_SECRET[0])
{
for (int i1 = 0; i1 < customSecretSize; i1 += 8)
{
customSecret[i1] = ptr24[i1];
customSecret[i1+1] = ptr24[i1+1];
customSecret[i1+2] = ptr24[i1+2];
customSecret[i1+3] = ptr24[i1+3];
customSecret[i1+4] = ptr24[i1+4];
customSecret[i1+5] = ptr24[i1+5];
customSecret[i1+6] = ptr24[i1+6];
customSecret[i1+7] = ptr24[i1+7];
}
}
if (Avx2.IsSupported)
{
const int m256i_size = 32;
var seed1 = Vector256.Create((ulong)seed, (ulong)(0U - seed), (ulong)seed, (ulong)(0U - seed));
fixed (byte* secret1 = &XXH3_SECRET[0])
{
for (int i = 0; i < XXH_SECRET_DEFAULT_SIZE / m256i_size; i++)
{
int uint64_offset = i * 4;
var src32 = Avx2.LoadVector256(((ulong*)secret1) + uint64_offset);
var dst32 = Avx2.Add(src32, seed1);
Avx2.Store((ulong*) customSecret + uint64_offset, dst32);
}
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
var seed1 = Vector128.Create((long)seed, (long)(0U - seed));
fixed (byte* secret1 = &XXH3_SECRET[0])
{
for (int i = 0; i < XXH_SECRET_DEFAULT_SIZE / m128i_size; i++)
{
int uint64_offset = i * 2;
var src16 = Sse2.LoadVector128(((long*) secret1) + uint64_offset);
var dst16 = Sse2.Add(src16, seed1);
Sse2.Store((long*) customSecret + uint64_offset, dst16);
}
}
}
else
{
fixed (byte* kSecretPtr = &XXH3_SECRET[0])
{
int nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
for (int i = 0; i < nbRounds; i++)
{
byte* ptr = kSecretPtr + 16 * i;
ulong lo = *(ulong*) ptr + seed;
byte* ptr1 = kSecretPtr + 16 * i + 8;
ulong hi = *(ulong*) ptr1 - seed;
byte* dst = (byte*) customSecret + 16 * i;
*(ulong*) dst = lo;
byte* dst1 = (byte*) customSecret + 16 * i + 8;
*(ulong*) dst1 = hi;
}
}
}
ulong* acc5 = stackalloc ulong[8];
fixed (ulong* ptr25 = &XXH3_INIT_ACC[0])
{
acc5[0] = ptr25[0];
acc5[1] = ptr25[1];
acc5[2] = ptr25[2];
acc5[3] = ptr25[3];
acc5[4] = ptr25[4];
acc5[5] = ptr25[5];
acc5[6] = ptr25[6];
acc5[7] = ptr25[7];
}
int nbStripesPerBlock1 = (customSecretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
int blockLen = XXH_STRIPE_LEN * nbStripesPerBlock1;
int nbBlocks = (len - 1) / blockLen;
for (int n1 = 0; n1 < nbBlocks; n1++) {
byte* input1 = input + n1 * blockLen;
for (int n = 0; n < nbStripesPerBlock1; n++ ) {
byte* inp = input1 + n * XXH_STRIPE_LEN;
byte* secret1 = customSecret + n * XXH_SECRET_CONSUME_RATE;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc5 + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*)inp + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*)secret1 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc5 + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc5 + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) inp + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret1 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc5 + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc5;
byte* xinput = inp;
byte* xsecret = secret1;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong)(uint)(data_key & 0xFFFFFFFF) * (ulong)(uint)(y);
}
}
}
byte* secret2 = customSecret + customSecretSize - XXH_STRIPE_LEN;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
var prime32 = Vector256.Create(XXH_PRIME32_1);
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc5 + uint64_offset);
var shifted = Avx2.ShiftRightLogical(acc_vec, 47);
var data_vec = Avx2.Xor(acc_vec, shifted);
var key_vec = Avx2.LoadVector256((ulong*) secret2 + uint64_offset);
var data_key = Avx2.Xor(data_vec, key_vec).AsUInt32();
var data_key_hi = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var prod_lo = Avx2.Multiply(data_key, prime32);
var prod_hi = Avx2.Multiply(data_key_hi, prime32);
var result = Avx2.Add(prod_lo, Avx2.ShiftLeftLogical(prod_hi, 32));
Avx2.Store(acc5 + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
var prime32 = Vector128.Create(XXH_PRIME32_1);
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc5 + uint64_offset).AsUInt32();
var shifted = Sse2.ShiftRightLogical(acc_vec, 47);
var data_vec = Sse2.Xor(acc_vec, shifted);
var key_vec = Sse2.LoadVector128((uint*) secret2 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_hi = Sse2.Shuffle(data_key.AsUInt32(), _MM_SHUFFLE_0_3_0_1);
var prod_lo = Sse2.Multiply(data_key, prime32);
var prod_hi = Sse2.Multiply(data_key_hi, prime32);
var result = Sse2.Add(prod_lo, Sse2.ShiftLeftLogical(prod_hi, 32));
Sse2.Store(acc5 + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc5;
byte* xsecret = secret2;
byte* ptr = xsecret + i * 8;
ulong key64 = *(ulong*) ptr;
ulong acc64 = xacc[i];
acc64 = acc64 ^ (acc64 >> 47);
acc64 ^= key64;
acc64 *= XXH_PRIME32_1;
xacc[i] = acc64;
}
}
}
int nbStripes1 = ((len - 1) - (blockLen * nbBlocks)) / XXH_STRIPE_LEN;
byte* input8 = input + nbBlocks * blockLen;
for (int n3 = 0; n3 < nbStripes1; n3++ ) {
byte* inp2 = input8 + n3 * XXH_STRIPE_LEN;
byte* secret1 = customSecret + n3 * XXH_SECRET_CONSUME_RATE;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc5 + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*)inp2 + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*)secret1 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc5 + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc5 + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) inp2 + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret1 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc5 + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc5;
byte* xinput = inp2;
byte* xsecret = secret1;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong)(uint)(data_key & 0xFFFFFFFF) * (ulong)(uint)(y);
}
}
}
byte* p1 = input + len - XXH_STRIPE_LEN;
byte* secret12 = customSecret + customSecretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START;
if (Avx2.IsSupported)
{
const int m256i_size = 32;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m256i_size; i++)
{
int uint32_offset = i * 8;
int uint64_offset = i * 4;
var acc_vec = Avx2.LoadVector256(acc5 + uint64_offset);
var data_vec = Avx2.LoadVector256((uint*)p1 + uint32_offset);
var key_vec = Avx2.LoadVector256((uint*)secret12 + uint32_offset);
var data_key = Avx2.Xor(data_vec, key_vec);
var data_key_lo = Avx2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Avx2.Multiply(data_key, data_key_lo);
var data_swap = Avx2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Avx2.Add(acc_vec, data_swap);
var result = Avx2.Add(product, sum);
Avx2.Store(acc5 + uint64_offset, result);
}
}
else if (Sse2.IsSupported)
{
const int m128i_size = 16;
const byte _MM_SHUFFLE_0_3_0_1 = 0b0011_0001;
const byte _MM_SHUFFLE_1_0_3_2 = 0b0100_1110;
for (int i = 0; i < XXH_STRIPE_LEN / m128i_size; i++)
{
int uint32_offset = i * 4;
int uint64_offset = i * 2;
var acc_vec = Sse2.LoadVector128(acc5 + uint64_offset);
var data_vec = Sse2.LoadVector128((uint*) p1 + uint32_offset);
var key_vec = Sse2.LoadVector128((uint*) secret12 + uint32_offset);
var data_key = Sse2.Xor(data_vec, key_vec);
var data_key_lo = Sse2.Shuffle(data_key, _MM_SHUFFLE_0_3_0_1);
var product = Sse2.Multiply(data_key, data_key_lo);
var data_swap = Sse2.Shuffle(data_vec, _MM_SHUFFLE_1_0_3_2).AsUInt64();
var sum = Sse2.Add(acc_vec, data_swap);
var result = Sse2.Add(product, sum);
Sse2.Store(acc5 + uint64_offset, result);
}
}
else
{
for (int i = 0; i < XXH_ACC_NB; i++)
{
ulong* xacc = acc5;
byte* xinput = p1;
byte* xsecret = secret12;
byte* ptr = xinput + i * 8;
ulong data_val = *(ulong*) ptr;
byte* ptr1 = xsecret + i * 8;
ulong data_key = data_val ^ *(ulong*) ptr1;
xacc[i ^ 1] += data_val;
ulong y = data_key >> 32;
xacc[i] += (ulong)(uint)(data_key & 0xFFFFFFFF) * (ulong)(uint)(y);
}
}
uint128 uint129;
byte* secret13 = customSecret + XXH_SECRET_MERGEACCS_START;
ulong result66 = (ulong)len * XXH_PRIME64_1;
for (int i3 = 0; i3 < 4; i3++)
{
ulong* acc = acc5 + 2 * i3;
byte* secret1 = secret13 + 16 * i3;
byte* ptr = secret1+8;
ulong lhs = acc[0] ^ *(ulong*) secret1;
ulong rhs = acc[1] ^ *(ulong*) ptr;
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
result66 += product.low64 ^ product.high64;
}
ulong h68 = result66;
h68 = h68 ^ (h68 >> 37);
h68 *= 0x165667919E3779F9UL;
h68 = h68 ^ (h68 >> 32);
uint129.low64 = h68;
byte* secret14 = customSecret + customSecretSize - XXH3_ACC_SIZE - XXH_SECRET_MERGEACCS_START;
ulong result67 = ~((ulong)len * XXH_PRIME64_2);
for (int i4 = 0; i4 < 4; i4++)
{
ulong* acc = acc5 + 2 * i4;
byte* secret1 = secret14 + 16 * i4;
byte* ptr = secret1+8;
ulong lhs = acc[0] ^ *(ulong*) secret1;
ulong rhs = acc[1] ^ *(ulong*) ptr;
uint128 ret;
if (Bmi2.IsSupported)
{
ulong product_low;
ulong product_high = Bmi2.X64.MultiplyNoFlags(lhs, rhs, &product_low);
uint128 r128;
r128.low64 = product_low;
r128.high64 = product_high;
ret = r128;
}
else
{
ulong y = rhs & 0xFFFFFFFF;
ulong lo_lo = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y);
ulong y1 = rhs & 0xFFFFFFFF;
ulong hi_lo = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y1);
ulong y2 = rhs >> 32;
ulong lo_hi = (ulong)(uint)(lhs & 0xFFFFFFFF) * (ulong)(uint)(y2);
ulong y3 = rhs >> 32;
ulong hi_hi = (ulong)(uint)(lhs >> 32) * (ulong)(uint)(y3);
ulong cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
ulong upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
ulong lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
uint128 r128;
r128.low64 = lower;
r128.high64 = upper;
ret = r128;
}
uint128 product = ret;
result67 += product.low64 ^ product.high64;
}
ulong h69 = result67;
h69 = h69 ^ (h69 >> 37);
h69 *= 0x165667919E3779F9UL;
h69 = h69 ^ (h69 >> 32);
uint129.high64 = h69;
return uint129;
}
}